Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells.
نویسندگان
چکیده
Formation, evolution and vanishing of bubbles are common phenomena in nature, which can be easily observed in boiling or falling water, carbonated drinks, gas-forming electrochemical reactions and so on. However, the morphology and the growth dynamics of the bubbles at nanoscale have not been fully investigated owing to the lack of proper imaging tools that can visualize nanoscale objects in the liquid phase. Here, we demonstrate for the first time that the nanobubbles in water encapsulated by graphene membrane can be visualized by in-situ ultra-high vacuum transmission electron microscopy. Our microscopic results indicate two distinct growth mechanisms of merging nanobubbles and the existence of a critical radius of nanobubbles that determines the unusually long stability of nanobubbles. Interestingly, the gas transport through ultrathin water membranes at nanobubble interface is free from dissolution, which is clearly different from conventional gas transport that includes condensation, transmission and evaporation.
منابع مشابه
Formation of surface nanobubbles and the universality of their contact angles: a molecular dynamics approach.
We study surface nanobubbles using molecular dynamics simulation of ternary (gas, liquid, solid) systems of Lennard-Jones fluids. They form for a sufficiently low gas solubility in the liquid, i.e., for a large relative gas concentration. For a strong enough gas-solid attraction, the surface nanobubble is sitting on a gas layer, which forms in between the liquid and the solid. This gas layer is...
متن کاملLeakiness of Pinned Neighboring Surface Nanobubbles Induced by Strong Gas–Surface Interaction
The stability of two neighboring surface nanobubbles on a chemically heterogeneous surface is studied by molecular dynamics (MD) simulations of binary mixtures consisting of Lennard-Jones (LJ) particles. A diffusion equation-based stability analysis suggests that two nanobubbles sitting next to each other remain stable, provided the contact line is pinned, and that their radii of curvature are ...
متن کاملApplying a Modified Two-Fluid Model to Numerical Simulation of Two-Phase Flow in the Membrane Chlor-Alkali Cells
In this study, gas evolution in a vertical electrochemical cell is investigated numerically with a modified two-fluid model. The mathematical model involves solution of separate transport equation for the gas and liquid phases with an allowance to inter-phase transfer of mass and momentum. The governing equations are discreted via the finite volume technique and then are solved by ...
متن کاملModeling and Experimental Study of Carbon Dioxide Absorption in a Flat Sheet Membrane Contactor
comIn the present study, CO2 removal from natural gas stream has been studied using a flat sheet membrane contactor. A three dimensional mathematical model is developed to describe the process. The model considers the transport of a gas mixture containing carbon dioxide and methane through a flat sheet membrane contactor module. The model is based on the non-wetted mode of operation, in which t...
متن کاملConductance signatures of electron confinement induced by strained nanobubbles in graphene.
We investigate the impact of strained nanobubbles on the conductance characteristics of graphene nanoribbons using a combined molecular dynamics - tight-binding simulation scheme. We describe in detail how the conductance, density of states, and current density of zigzag or armchair graphene nanoribbons are modified by the presence of a nanobubble. In particular, we establish that low-energy el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature communications
دوره 6 شماره
صفحات -
تاریخ انتشار 2015